If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+8y=24
We move all terms to the left:
y^2+8y-(24)=0
a = 1; b = 8; c = -24;
Δ = b2-4ac
Δ = 82-4·1·(-24)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{10}}{2*1}=\frac{-8-4\sqrt{10}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{10}}{2*1}=\frac{-8+4\sqrt{10}}{2} $
| 3/5=8(x-4) | | 35=-5+2k+5 | | F(x)=10^3x | | 5x-27=48 | | -6n+12+7n+12=2 | | 25+0.15m=71.80 | | 7x+68=5 | | -37=-u/6 | | 7=5+3x-2+5 | | 6+4(x+5)=5x-8(x-5) | | 4+3r+2-3r=-10 | | 5(x=2)=25 | | 4q-8=q=4 | | -22=-x-4 | | 0.75x=63-x | | (13x+11)+(7x+9)=180 | | -x+1=-3x+21 | | 8a-5=6-3a | | 9m-2=17 | | 15x2-2x=0 | | x+22=2(4x-3) | | 35=5(3x+3)+5 | | x²+12x=3,69 | | 4-7=3x+8 | | 35x-7=8 | | -5w+9=15 | | 2(d-3)=76 | | -10-4t/8=-12 | | x+27+2x+7=180 | | 14x^2-14x-95=0 | | 3(2x+5)+8=-31 | | 2•(3x+2)=6x+5 |